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The lattice Boltzmann model for the compressible Euler equations is proposed together with its rigorous
theoretical background. The proposed model has completely overcome the defects of the previous model that
the specific-heat ratio cannot be chosen freely. The macroscopic variables obtained from the solution are shown
to satisfy, in the limit of the small Knudsen number, the compressible Euler equations if the variation of the
solution is moderate. This is the case where no shock waves or contact discontinuities appear. In contrast, when
the solution makes steep variation at several localized regions due to the appearance of shock waves and
contact discontinuities, the corresponding macroscopic variables satisfy the weak form of the Euler equations.
Their derivation is carried out rigorously by taking into account the scale of variation of the solution correctly.
This is the first study that has laid the theoretical foundation of the lattice Boltzmann model for the simulation
of flows with shock waves and contact discontinuities. Numerical examples and the error estimates are also
given, which are consistent with the above theoretical arguments.
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I. INTRODUCTION

Recently, the lattice Boltzmann method(LBM ) is attract-
ing a great deal of attention[1–9]. The LBM solves the ki-
netic equation of the discrete-molecular-velocity type such
that the macroscopic variables obtained from the solution
satisfy the desired fluid-dynamics-type equations. Various
merits of the LBM are pointed out: a simple scheme, linear
advective terms, high resolution for shock wave computa-
tion, and so on. Because of the last merit for the shock wave
computation, the LBM is often used as a simulation tool for
compressible flows with shock waves and contact disconti-
nuities[1–3]. However, its theoretical background is unclear.
We focus on this aspect first, and then make a statement
about our model subsequently.

When using the LBM as a numerical tool, one must con-
firm that the macroscopic variables obtained from the solu-
tion of the kinetic equation of the LBM satisfy the desired
fluid-dynamic-type equations in the limit of«→0, where« is
the Knudsen number. For that purpose, the so-called
Chapman-Enskog expansion is often used[1–8]. Recently, as
the more systematic analytical procedure, the asymptotic
analysis is also used[9]. We must note, however, that such
analytical confirmation makes sense only when the numeri-
cal scheme used in the LBM is consistent with the original
kinetic equation. That is, the difference between the numeri-
cal scheme and the original kinetic equation must remain
small. Otherwise, the theoretical confirmation of the LBM
starting from the original kinetic equation is meaningless.

Bearing this in mind, let us consider flows with shocks
and contact discontinuities, which are of our interest in the
present study. It is known that the dimensionless width of
shocks and contact discontinuities is of the order of« accord-
ing to the kinetic theory[10,11]. In order to assure the con-

sistency of the numerical scheme, therefore, it must satisfy
the severe restriction that the dimensionless mesh width is
much smaller than«, since the kinetic equation involves de-
rivative terms. The derivative terms can generate error terms
of finite magnitude if the mesh width isOs«d, or the width of
the shocks or the contact discontinuities.

However, the mesh width ofOs«d is often used to simu-
late flows with shocks and contact discontinuities by the
LBM in order to save computation time[1–3]. It is impera-
tive, therefore, to present a clear theoretical background. To
this end, we consider the integral relation of the kinetic equa-
tion in the same manner as the weak form of the Euler equa-
tions being considered when treating solutions with discon-
tinuities [12–15]. This integral relation includes no
derivatives of the velocity distribution function. It is easy to
show that, even if the mesh width isOs«d, the usual finite-
difference scheme of the kinetic equation is consistent with
this integral relation(the proof is shown in the Appendix of
the present study). We then prove that the macroscopic vari-
ables obtained from the solution of this integral relation sat-
isfy, in the limit of «→0, the weak form of the compressible
Euler equations. It is well known that the weak form of the
compressible Euler equations can correctly describe flows
with shocks and contact discontinuities if the subsidiary en-
tropy condition is satisfied[13–15].

In addition, we present a new lattice Boltzmann model
that gives the solutions of the compressible Euler equations
(and also their weak form). In the early models[2–4], there
was a serious defect that the specific-heat ratio cannot be
chosen freely. Recently, the two-dimensional model that
overcomes this defect was suggested[1]. The new model
presented in this study, however, is not limited to the two-
dimensional version, but also for the one- and three-
dimensional versions. Moreover, the new model of the two-
dimensional version succeeded in reducing the number of
molecular velocities from 17 of the previous model to 9.
Thus, the computation time is almost halved. The other di-
mensional versions are also small in their number of molecu-
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lar velocities (5 and 15 for the one- and the three-
dimensional versions, respectively).

It is noted here that the compressible Navier-Stokes(NS)
equations are not necessary for the analysis of the initial-
value problem of compressible flows in their continuum limit
(or flows whose Mach number is of the order of unity in their
continuum limit «→0). In the compressible flows, the vis-
cous and diffusive terms appear only as perturbations of the
Euler equations and they vanish in the continuum limit
[16,17]. Therefore, the lattice Boltzmann model for the Euler
equations is sufficient to describe compressible flows. It is
inefficient to use the lattice Boltzmann model for the com-
pressible NS equations[18] whose number of molecular ve-
locities and computation time become larger in general.

The present paper is arranged in the following order. In
Sec. II, the new lattice Boltzmann model is presented. Its
theoretical background is given in Sec. III, where the
asymptotic analysis for small« is carried out. Numerical
examples and error estimates are arranged in Sec. IV. In the
last section(Sec. V), some concluding remarks are given.

II. LATTICE BOLTZMANN MODEL

We introduce a lattice Boltzmann model in its dimen-
sional form in Sec. II A, and then, in its nondimensional
form in Sec. II B.

A. Dimensional expressions

First, we write down the compressible Euler equations
explicitly:

] r

] t
+

] rua

] xa

= 0, s1ad

] rua

] t
+

] ruaub

] xb

+
] p

] xa

= 0, s1bd

] rsbRT+ ua
2d

] t
+

] ruasbRT+ ub
2d + 2pua

] xa

= 0 s1cd

sa = 1,2, . . . ,D; b = 1,2, . . . ,Dd,

wheret is the time,xa is the spatial coordinate,r, ua, T, and

p = rRT s2d

are, respectively, the density, the flow velocity in thexa di-
rection, the temperature, and the pressure of a gas.R andD
are the specific gas constant and the number of spatial di-
mensions, respectively.b is a given constant expressed as

b =
2

g − 1
, s3d

whereg is the specific-heat ratio. Note that, in the present
study, the subscriptsa andb represent the number of spatial
coordinates and the summation convention is applied to
these subscripts. The initial condition is

r = r0, ua = ua
0, T = T0 at t = 0, s4d

wherer0, ua
0, andT0 are given functions ofxa.

Now we present a lattice Boltzmann model that gives the
solutions of the initial-value problem of the compressible
Euler equations(1a)–(1c) with the initial condition(4). Let
cia (i =1,2, . . . ,I; I is the total number of discrete molecular
velocities) be the molecular velocity in thexa direction of the
ith particle, andhi be another variable newly introduced to

FIG. 1. Distribution of the discrete molecular velocitiesciasa
=1, . . . ,D ; i =1,2, . . . ,Id for each dimensional model:(a) one-
dimensional modelsD=1,I =5d; (b) two-dimensional modelsD
=2,I =9d; (c) three-dimensional modelsD=3,I =15d.
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control the specific-heat ratio.f ist ,xad is the velocity distri-
bution function of theith particle. The macroscopic variables
r, ua, andT are defined as

r = o
i=1

I

f i , s5ad

rua = o
i=1

I

f icia, s5bd

rsbRT+ ua
2d = o

i=1

I

f iscia
2 + hi

2d. s5cd

Note that, in the present study, the summation convention is
not applied to the subscripti representing the kind of mol-
ecules.

Consider the initial-value problem of the Bhatnager—
Gross-Krook-type kinetic equation[19]:

] f i

] t
+ cib

] f i

] xb

=
f i
eqsr,ua,Td − f i

t
, s6d

with the initial condition

f i = f i
eqsr0,ua

0,T0d at t = 0, s7d

where t sthe relaxation timed is a given constant and
f i
eqsr ,ua ,Td sthe local equilibrium velocity distribution

functiond is a given function of the macroscopic variables.
In the LBM, the following discretized form of Eq.s6d is
often used:

f ist + Dt,xa + ciaDtd − f ist,xad
Dt

=
f i
eqsr,ua,Td − f i

t
, s8d

whereDt is the discrete time step of ordert. It is clear that
Eq. s8d is only one of the finite-difference scheme of the
kinetic equations6d. Therefore, we use Eq.s6d as a basic
kinetic equation in the following. It is also noted that there is
a recent trend in the LBM community to use the usual finite-
difference scheme of Eq.s6d rather than Eq.s8d due to the
numerical stability problemf20,21g.

Now return to the explanation of the lattice Boltzmann
models. The following constraints are imposed on the mo-
ments off i

eq appearing on the right-hand sides of Eqs.(6) and
(7):

r = o
i=1

I

f i
eq, s9ad

rua = o
i=1

I

f i
eqcia, s9bd

pdab + ruaub = o
i=1

I

f i
eqciacib, s9cd

rsbRT+ ua
2d = o

i=1

I

f i
eqscia

2 + hi
2d, s9dd

rfsb + 2dRT+ ub
2gua = o

i=1

I

f i
eqscib

2 + hi
2dcia, s9ed

Then the macroscopic variablesr, ua, and T derived from
the solution of the kinetic equation(6) with the initial con-
dition (7) satisfy the compressible Euler equations(1a)–(1c)
and their initial condition(4) if the time and length scales of
variation of solution are much larger thant and tÎRT, re-
spectively. The proof is given in Sec. III A.

The specific models that satisfy the above constraints
(9a)–(9e) are presented in the following section(Sec. II B).

B. Nondimensional expressions

The nondimensional variables and equations, which are
convenient for the following analysis and numerical calcula-
tion, are listed first.

Let L, r0, and T0 be, respectively, the reference length,
density, and temperature. Then, the nondimensional variables
are defined as follows:

t̂ =
t

L/ÎRT0

, x̂a =
xa

L
, ĉia =

cia

ÎRT0

, ĥi =
hi

ÎRT0

,

f̂ i =
f

r0
, f̂ i

eq=
f i
eq

r0
,

r̂ =
r

r0
, ûa =

ua

ÎRT0

, T̂ =
T

T0
, p̂ =

p

r0RT0
,

r̂0 =
r0

r0
, ûa

0 =
ua

0

ÎRT0

, T̂0 =
T0

T0
, p̂0 =

p0

r0RT0
. s10d

In terms of these nondimensional variables, the compressible
Euler equations(1a)–(1c) and their initial condition(4) are

] r̂

] t̂
+

] r̂ûa

] x̂a

= 0, s11ad

] r̂ûa

] t̂
+

] r̂ûaûb

] x̂b

+
] p̂

] x̂a

= 0, s11bd

] r̂sbT̂+ ûa
2d

] t̂
+

] r̂ûasbT̂+ ûb
2d + 2p̂ûa

] x̂a

= 0 s11cd

sa = 1,2, . . . ,D; b = 1,2, . . . ,Dd,

where

p̂ = r̂T̂ s12d

and
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r̂ = r̂0, ûa = ûa
0, T̂ = T̂0 at t̂ = 0. s13d

The nondimensional macroscopic variables used in the LBM
are defined as

r̂ = o
i=1

I

f̂ i , s14ad

r̂ûa = o
i=1

I

f̂ iĉia, s14bd

r̂sbT̂+ ûa
2d = o

i=1

I

f̂ isĉia
2 + ĥi

2d, s14cd

from Eqs.(5a)–(5c). The kinetic equation(6) and its initial
condition (7) of nondimensional form are

] f̂ i

] t̂
+ ĉib

] f̂ i

] x̂b

=
f̂ i
eqsr̂,ûa,T̂d − f̂ i

«
, s15d

and

f̂ i = f̂ i
eqsr̂0,ûa

0,T̂0d at t̂ = 0, s16d

where« is the Knudsen number defined by

« =
tÎRT0

L
. s17d

f̂ i
eq satisfies the following constraints from Eqs.s9ad–s9ed:

r̂ = o
i=1

I

f̂ i
eq, s18ad

r̂ûa = o
i=1

I

f̂ i
eqĉia, s18bd

p̂dab + r̂ûaûb = o
i=1

I

f̂ i
eqĉiaĉib, s18cd

r̂sbT̂+ ûa
2d = o

i=1

I

f̂ i
eqsĉia

2 + ĥi
2d, s18dd

r̂fsb + 2dT̂ + ûb
2gûa = o

i=1

I

f̂ i
eqsĉib

2 + ĥi
2dĉia. s18ed

We will give a specific model for each number of dimen-
sions Ds=1, 2, or 3d that satisfies the above constraints
(18a)–(18e).

(1) One-dimensional modelsD=1,I =5d.
Let

ĉi1 = 50 for i = 1

v1 cosspid for i = 2,3

v2 cosspid for i = 4,5,
s19d

ĥi = Hh0 for i = 1

0 for i = 2,3,4,5,

wherev1, v2sÞv1d, andh0 are given nonzero constants[see
Fig. 1(a)], and let

f̂ i
eq= r̂sAi + Biû1ĉi1d for i = 1,2,3,4,5 s20d

be a local equilibrium velocity distribution function, where

Ai =5
b − 1

h0
2 T̂ for i = 1

1

2sv1
2 − v2

2dF− v2
2 + Ssb − 1d

v2
2

h0
2 + 1DT̂ + û1

2G for i = 2,3

1

2sv2
2 − v1

2dF− v1
2 + Ssb − 1d

v1
2

h0
2 + 1DT̂ + û1

2G for i = 4,5,

s21ad

Bi =5− v2
2 + sb + 2dT̂ + û1

2

2v1
2sv1

2 − v2
2d

for i = 2,3

− v1
2 + sb + 2dT̂ + û1

2

2v2
2sv2

2 − v1
2d

for i = 4,5.

s21bd

Then ĉ
i1

, ĥi, and f̂ i
eq si =1,2,3,4,5d given above satisfy the constraints(18a)–(18e). This is the first lattice Boltzmann model

of one-dimensional version whose specific-heat ratiog [which is related tob by Eq. (3)] can be chosen according to our
convenience, while the previous model gives the unphysical value ofg=3 (or b=1) only.
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(2) Two-dimensional modelsD=2,I =9d.
Let

sĉi1,ĉi2d =5
s0,0d for i = 1

v1Scos
pi

2
,sin

pi

2
D for i = 2,3,4,5

v2FcospS i

2
+

1

4
D,sin pS i

2
+

1

4
DG for i = 6,7,8,9,

ĥi = Hh0 for i = 1

0 for i = 2,3, . . . ,9,
s22d

wherev1, v2sÞv1d, andh0 are given nonzero constantsfsee Fig. 1sbdg, and let

f̂ i
eq= r̂sAi + Biûaĉia + Diûaĉiaûbĉibd for i = 1,2, . . . ,9 s23d

be a local equilibrium velocity distribution function, where

Ai =5
b − 2

h0
2 T̂ for i = 1

1

4sv1
2 − v2

2dF− v2
2 + Ssb − 2d

v2
2

h0
2 + 2DT̂ +

v2
2

v1
2ûa

2G for i = 2,3,4,5

1

4sv2
2 − v1

2dF− v1
2 + Ssb − 2d

v1
2

h0
2 + 2DT̂ +

v1
2

v2
2ûa

2G for i = 6,7,8,9,

s24ad

Bi =5− v2
2 + sb + 2dT̂ + ûb

2

2v1
2sv1

2 − v2
2d

for i = 2,3,4,5

− v1
2 + sb + 2dT̂ + ûb

2

2v2
2sv2

2 − v1
2d

for i = 6,7,8,9,

s24bd

Di =5
1

2v1
4 for i = 2,3,4,5

1

2v2
4 for i = 6,7,8,9.

s24cd

Then ĉia sa=1,2d, ĥi, and f̂ i
eq si =1,2, . . . ,9d given above satisfy the constraints(18a)–(18e). Compared with the previously

proposed model[1], this model is superior in the computational efficiency, since the number of molecular velocities is reduced
from 17 to 9. Thus, the computation time is almost halved.

(3) Three-dimensional model(D=3, I =15).
Let

sĉi1,ĉi2,ĉi3d =5
s0,0,0d for i = 1

v1s±1,0,0d, v1s0, ± 1,0d, v1s0,0, ± 1d for i = 2,3, . . . ,7

v2

Î3
s±1, ± 1, ± 1d for i = 8,9, . . . ,15,

ĥi = Hh0 for i = 1

0 for i = 2,3, . . . ,15,
s25d

wherev1, v2sÞv1d, andh0 are given nonzero constantsfsee Fig. 1scdg, and let

f̂ i
eq= r̂sAi + Biûaĉia + Diûaĉiaûbĉibd for i = 1,2, . . . ,15 s26d

be a local equilibrium velocity distribution function, where
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Ai =5
b − 3

h0
2 T̂ for i = 1

1

6sv1
2 − v2

2dF− v2
2 + Ssb − 3d

v2
2

h0
2 + 3DT̂ +

v2
2

v1
2ûa

2G for i = 2,3, . . . ,7

1

8sv2
2 − v1

2dF− v1
2 + Ssb − 3d

v1
2

h0
2 + 3DT̂ +

3v1
2 − v2

2

2v2
2 ûa

2G for i = 8,9, . . . ,15,

s27ad

Bi =5− v2
2 + sb + 2dT̂ + ûb

2

2v1
2sv1

2 − v2
2d

for i = 2,3, . . . ,7

3f− v1
2 + sb + 2dT̂ + ûb

2g
8v2

2sv2
2 − v1

2d
for i = 8,9, . . . ,15,

s27bd

Di =5
1

2v1
4 for i = 2,3, . . . ,7

9

16v2
4 for i = 8,9, . . . ,15.

s27cd

Then ĉia sa=1,2,3d, ĥi, and f̂ i
eq si =1,2, . . . ,15d given

above satisfy the constraints(18a)–(18e). This is the first
lattice Boltzmann model of three-dimensional version whose
specific-heat ratio can be chosen according to our
convenience.

III. ASYMPTOTIC ANALYSIS

In this section the asymptotic analysis for small« of the
initial-value problem(15) and (16) is carried out to investi-
gate the behavior of a solution in the limit of«→0. We

consider the case where the deviation off̂ i from that of a
uniform reference state at rest is of the order of unity(or the
Mach number of the flow is of the order of unity) through-
out. When the scale of variation is of the order of unity with
respect tot̂ and x̂a, the usual asymptotic analysis[16,17] is
applied. This is explained in Sec. III A. We will find that the
macroscopic variables obtained from the kinetic equation
(15) with the initial condition(16) satisfy, in the limit of«
→0, the compressible Euler equations(11a)–(11c) and their
initial condition (13).

In contrast, when the shock waves and contact disconti-
nuities appear and the solution includes the regions of steep
variation, the effect of steep variation must be taken into
account correctly in the analysis. This case is treated in Sec.
III B. Since the usual finite-difference scheme of the kinetic
equation(15) of the mesh widthOs«d is not consistent with
the kinetic equation itself(see Sec. I), but with the integral
relation (see Appendix), the integral relation of the kinetic
equation is used as a basic equation. Then the macroscopic
variables obtained from the integral relation are found to
satisfy, in the limit of «→0, the weak form of the Euler
equations.

The following analysis is based on the general model,
Eqs. (15)–(18), and application to the concrete models is

straightforward: only to substituteĉia, ĥi, and f̂ i
eq of the spe-

cific model given by Eqs.(19) and (20), or (22) and (23) or
(25) and (26), into the corresponding parts of the following
analysis. For the sake of clarity, a proposition is suggested
first and its proof is given subsequently.

A. Solutions of moderate variation

Proposition 1. Consider a case where the solutionf̂ i

makes an appreciable variation overt̂ and x̂a of the order of

unity at any place. Then the solutionf̂ i of the initial-value
problem, Eqs.(15) and(16), in the limit of «→0 is given by

f̂ i = f̂ i
eqsr̂ ,û,T̂d whose macroscopic variablesr̂, û, andT̂ sat-

isfy the compressible Euler equations(11a)–(11c) and their
initial condition (13).

Proof. We look for the asymptotic solution of Eq.(15) for
small« whose scale of variation is of the order of unity with
respect to the coordinatest̂ and x̂a, in a power series of«
[22]:

f̂ i = f̂ i
s0d + « f̂ i

s1d + «2f̂ i
s2d + ¯ , s28d

where the component functionf̂ i
smd sm=0,1,2, . . .d is a quan-

tity of the order of unity.
Macroscopic variables are also expanded:

ĥ = ĥs0d + «ĥs1d + «2ĥs2d + ¯ , s29d

whereĥ represents any of the macroscopic variablesr̂, ûa, T̂,

and p̂. The component functionsĥ
smd

satisfy the relations
derived from Eqs.s14ad–s14cd and s12d. Only the leading-
order relations are explicitly given:
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r̂s0d = o
i=1

I

f̂ i
s0d, s30ad

r̂s0dûa
s0d = o

i=1

I

f̂ i
s0dĉia, s30bd

r̂s0dfbT̂s0d + sûa
s0dd2g = o

i=1

I

f̂ i
s0dsĉia

2 + ĥi
2d, s30cd

p̂s0d = r̂s0dT̂s0d. s30dd

The equilibrium distribution function is also expanded as
follows:

f̂ i
eq= f̂ i

eqs0d + « f̂ i
eqs1d + «2f̂ i

eqs2d + ¯ . s31d

The component functionf̂ i
eqsmd satisfies the following con-

straints from Eqs.s18ad–s18ed:

r̂s0d = o
i=1

I

f̂ i
eqs0d, s32ad

r̂s0dûa
s0d = o

i=1

I

f̂ i
eqs0dĉia, s32bd

p̂s0ddab + r̂s0dûa
s0dûb

s0d = o
i=1

I

f̂ i
eqs0dĉiaĉib, s32cd

r̂s0dfbT̂s0d + sûa
s0dd2g = o

i=1

I

f̂ i
eqs0dsĉia

2 + ĥi
2d, s32dd

r̂s0dfsb + 2dT̂s0d + sûb
s0dd2gûa

s0d = o
i=1

I

f̂ i
eqs0dsĉib

2 + ĥi
2dĉia,

s32ed

¯ .

where only the leading-order constraints are explicitly given.
Substituting Eqs.(28) and (31) into Eq. (15) and arrang-

ing the same order terms in«, we obtain the following series

of equations forf̂ i
smd:

f̂ i
eqs0d − f̂ i

s0d = 0, s33ad

f̂ i
eqs1d − f̂ i

s1d =
] f̂ i

s0d

] t̂
+ ĉib

] f̂ i
s0d

] x̂b

, s33bd

¯ .

The solution of Eq.(33a) is

f̂ i
s0d = f̂ i

eqs0dsr̂s0d,ûa
s0d,T̂s0dd. s34d

Equations33bd for f̂ i
s1d is linear and inhomogeneous. From

the relationoi=1
i=I gis f̂ i

eqs1d− f̂ i
s1dd=0, where

gi = 1, ĉia, or ĉia
2 + ĥi

2, s35d

Eq. s33bd has a solution only when its inhomogeneous term
satisfies the following relationssolvability conditiond:

o
i=1

I

giS ] f̂ i
s0d

] t̂
+ ĉib

] f̂ i
s0d

] x̂b

D = 0. s36d

When condition(36) is satisfied, the solution of Eq.(33b)
is given by

f̂ i
s1d = f̂ i

eqs1d −
] f̂ i

s0d

] t̂
− ĉib

] f̂ i
s0d

] x̂b

. s37d

Substituting Eq.s34d into the solvability conditions36d, we
can get the equations for the leading-order component func-
tions of the macroscopic variables:

] r̂s0d

] t̂
+

] r̂s0dûa
s0d

] x̂a

= 0, s38ad

] r̂s0dûa
s0d

] t̂
+

] r̂s0dûa
s0dûb

s0d

] x̂b

+
] p̂s0d

] x̂a

= 0, s38bd

] r̂s0dfbT̂s0d + sûa
s0dd2g

] t̂
+

] r̂s0dûa
s0dfbT̂s0d + sûb

s0dd2g + 2p̂s0dûa
s0d

] x̂a

= 0, s38cd

where Eqs.(32a)–(32e) are used. We can proceed with the
analysis to the higher orders in a similar way. One finds that
the leading-order set(38a)–(38c) corresponds with the com-
pressible Euler set of equations(11a)–(11c). However, the
next-order set, which is not explicitly given here, includes
terms that never arise in the Euler equations, and will con-
tribute to the error of the LBM.

As for the initial condition of the leading-order set
(38a)–(38c), it is given by the leading-order macroscopic

variablesr̂s0d,ûa
s0d,T̂s0d in the limit of t̂→0+. According to Eq.

(34), the leading-order velocity distribution function is given

by f̂ i
s0d= f̂ i

eqs0dsr̂s0d ,ûa
s0d ,T̂s0dd, and this fits to the initial condi-

tion [Eq. (16)] by setting its macroscopic variablesr̂s0d= r̂0,

ûa
s0d= ûa

0, and T̂s0d=T̂0. Thus, the initial condition for the
leading-order set(38a)–(38c) is given by r̂s0d= r̂0, ûa

s0d= ûa
0,

and T̂s0d=T̂0.

Thus, the solutionf̂ i of the initial-value problem(15) and
(16) in the limit of «→0 is given by the local equilibrium
distribution function, or Eq.(34), and its macroscopic vari-
ables satisfy the compressible Euler equations(11a)–(11c)
and their initial condition(13). j
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B. Solutions with steep variation

In order to make a discussion simple, we consider the
one-dimensional problem in this section. The subscriptsa
and b representing the spatial directions are omitted. The
extension of the discussion in this section to the two or three-
dimensional problems is straightforward.

It is well known that flows with shock waves and contact
discontinuities can be correctly described by the weak solu-
tions of the compressible Euler equations with the subsidiary
entropy condition[13–15]. The weak solutions of the initial-
value problem of the Euler equations(11a)–(11c) with Eq.
(13) are the solutions of the following integral relation:

E
−`

`

dx̂E
0

` 1 ] c

] t̂ 5r̂

r̂û

r̂sbT̂+ û2d
6

+
] c

] x̂5r̂û

r̂û2 + p̂

r̂ûsbT̂+ û2d + 2p̂û
62dt̂

+E
−`

` 5r̂0

r̂0û0

r̂0fbT̂0 + sû0d2g
6cs0,x̂ddx̂= 0, s39d

wherecst̂ , x̂d is any smooth test function oft̂ and x̂, which
vanishes fort̂+ ux̂u large enough. The integral relations39d is
called the weak form of the Euler equations. According to
Refs.f13–15g, the solutions of the integral relations39d sat-
isfy the Euler equations themselves in the regions where the
solution is smooth, and they satisfy, at their discontinuities,
the correct jump conditions derived from the conservation
form of the compressible Euler equationssor the Rankine-
Hugoniot relationsf10,23gd.

In order to obtain the weak solutions of the Euler equa-
tions, or the solutions of the integral relation(39) by the
kinetic-equation system, we consider the following integral
relation derived from the kinetic equation(15) and the initial
condition (16):

E
−`

`

dx̂E
0

` FS ] c

] t̂
+ ĉi

] c

] x̂
D f̂ i +

f̂ i
eqsr̂,û,T̂d − f̂

i

«
cGdt̂

+E
−`

`

f̂ i
eqsr̂0,û0,T̂0dcs0,x̂ddx̂= 0, s40d

wherec is the above-mentioned test function which is inde-
pendent of«. The finite-difference scheme of Eq.s15d is
consistent with this integral relations40d even if the mesh
width is Os«d ssee the Appendix for proofd. Therefore we
make an analysis on the basis of Eq.s40d. According to the
analysis of the Boltzmann equation, shock waves and contact
discontinuities are not real discontinuities but the thin layers
of width Os«d across which the variables make an appre-
ciable variation. In view of these facts, assuming the similar
situation, we suggest the following proposition.

Proposition 2. Consider a case where the solutionf̂ i

makes steep variation in several localized regions represent-
ing, for example, shock waves and contact discontinuities. In

the regions, the solutionf̂ i makes an appreciable variation
over t̂ and x̂ of Os«d. In the other regions, which are called
the Euler regions, it makes a moderate variation(an appre-
ciable variation overt̂ and x̂ of order unity). Then the solu-

tion f̂ i of Eq. (40) in the limit of «→0 is given by f̂ i

= f̂ i
eqsr̂ ,û,T̂d whose macroscopic variablesr̂, û, andT̂ satisfy

the integral relation(39), or the weak form of the compress-
ible Euler equations.

Proof. The localized regions of steep variation are repre-
sented by several thin layers of widthOs«d on thet̂− x̂ plane.
The variables inside these layers are attached with the sub-

script S, i.e., f̂ iS, f̂ iS
eq, andĥS (ĥ represents any of the macro-

scopic variables). Their scale of variation is of the order of
unity in the direction along the layers, and of the order of«
normal to the layers. The variables in the Euler regions are

attached with the subscriptE, i.e., f̂ iE , f̂ iE
eq, and ĥE. Their

scale of variation is of the order of unity but have disconti-
nuities across the thin layers of steep variation. The variables
in the thin layers(with the subscriptS) converge to those in
the Euler regions(with the subscriptE) very rapidly as the
distance normal to the layers increases.

In order to make the asymptotic analysis for small«, we
expand the variables in power series of« like Eqs.(28), (29),
and(31) with the subscriptE or S attached to each variable.
The component functions have the magnitude of order of
unity and they satisfy the same relations as Eqs.(30a)–(30d)
and (32a)–(32e), where the subscriptsa andb are removed
andE or S is attached to each variable.

Substituting the expanded series of variables into Eq.(40)
and noting that the integral area of the layers of steep varia-
tion with nonzero value ofc is Os«d, we arrange the same
order terms in«. We then obtain the following series of
integral relations:

E
−`

`

dx̂E
0

`

s f̂ iE
s0d − f̂ iE

eqs0ddcdt̂ = 0, s41ad

E
−`

`

dx̂E
0

` FS ] c

] t̂
+ ĉi

] c

] x̂
D f̂ iE

s0d + s f̂ iE
s1d − f̂ iE

eqs1ddcGdt̂

+E
−`

`

f̂ iE
eqs0dsr̂0,û0,T̂0dcs0,x̂ddx̂

+E E
Ds

fs f̂ iS
s0d − f̂ iS

eqs0dd − s f̂ iE
s0d − f̂ iE

eqs0ddgcdt̂dx̂= 0,

s41bd

where DS indicates the domain of steep variation on thet̂
− x̂ plane.

From the leading-order relation(41a), we get

f̂ iE
s0d = f̂ iE

eqs0dsr̂E
s0d,ûE

s0d,T̂E
s0dd, s42d

sincec is arbitrary.
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The next-order equation(41b) can be seen as a linear

inhomogeneous equation forf̂ iE
s1d. From the relation

oi=1
i=I gis f̂ iE

eqs1d− f̂ iE
s1dd=0, where gi is given by Eq. (35), Eq.

(41b) has a solution only when its inhomogeneous term sat-
isfies the following relation(solvability condition):

o
i=1

I

giHE
−`

`

dx̂E
0

` S ] c

] t̂
+ ĉi

] c

] x̂
D f̂ iE

s0ddt̂

+E
−`

`

f̂ iE
eqs0dsr̂0,û0,T̂0dcs0,x̂ddx̂

+E E
Ds

fs f̂ iS
s0d − f̂ iS

eqs0dd − s f̂ iE
s0d − f̂ iE

eqs0ddgcdt̂dx̂J = 0.

s43d

Substituting Eq.(42) into the solvability condition(43),
we get the following integral relation for the leading-order
component functions of the macroscopic variables in the Eu-

ler regionsr̂E
s0d, ûE

s0d, T̂E
s0d, and p̂E

s0d:

E
−`

`

dx̂E
0

` 1 ] c

] t̂ 5r̂E
s0d

r̂E
s0dûE

s0d

r̂E
s0dsbT̂E

s0d + sûE
s0dd2d

6
+

] c

] x̂5r̂E
s0dûE

s0d

r̂E
s0dsûE

s0dd2 + p̂E
s0d

r̂E
s0dûE

s0dsbT̂E
s0d + sûE

s0dd2d + 2p̂E
s0dûE

s0d 62dt̂

+E
−`

` 5r̂0

r̂0û0

r̂0sbT̂0 + sû0d2d
6cs0,x̂ddx̂= 0, s44d

where Eqs.s32ad–s32ed swith the subscriptsa, b removed

and E attached to each variabled and oi=1
i=I gis f̂ iS

eqs0d− f̂ iS
s0dd

=oi=1
i=I gis f̂ iE

eqs0d− f̂ iE
s0dd=0 are used. We find that Eq.s44d cor-

responds with the weak form of the Euler equationss39d.
Thus, the solutionf̂ i of Eq. (40) in the limit of «→0 is

given by the local equilibrium distribution function, or Eq.
(42), and its macroscopic variables satisfy the weak form of
the compressible Euler equations(39). j

IV. NUMERICAL EXAMPLES AND ERROR
ESTIMATES

Now we present several numerical examples of the lattice
Boltzmann models introduced in Sec. II and estimate their
errors. The parameters included in Eqs.(19), (22), and (25)
are chosen to bev1=1, v2=3, h0=2, and the finite-difference
scheme with the usual first-order forward in time and the
second-order upwind in space is used for the numerical com-
putation of the kinetic equation(15). The mesh width fort̂ is
set atDt̂=« /4. The scheme is consistent with the integral
relation(40) when computing flows with shocks and contact
discontinuities. The consistency is shown in Appendix. Note
that the entropy condition is not guaranteed to be satisfied by

the scheme, since it cannot realize the internal structure of
the shock waves. Thus, the shock waves across which the
entropy of fluid particles decreases may appear in the nu-
merical results. However, we believe that such shocks will
practically not appear. This estimate will be demonstrated in
Sec. IV B, where only the shocks across which the entropy
of fluid particles increases are found to appear in all the
numerical results.

A. Propagation of expansion waves

We consider the one-dimensional initial-value problem of
Eqs.(15) and(16) with D=1 whose initial macroscopic vari-
ables are given by

r̂0 = T̂0 = 1, û1
0 = U tanh x̂1, s45d

whereU is a given constant. It is expected that, whenU.0,
only the expansion waves will propagate and no shock waves
will appear. This problem is characterized by the three pa-
rameters«, U, andg sor bd.

The numerical results(flow velocity, pressure, density,
and temperature) at t̂=1 with «=10−4 and U=1 are shown
for three different values ofg=5/3, 7/5, and 9/7(or b=3, 5,
and 7) in Fig. 2 by the plots. The one-dimensional lattice
Boltzmann model, Eqs.(19), (20), (21a), and(21b), was used
for calculation. The corresponding numerical results of the
Euler equations themselves solved by the so-called MacCor-
mack scheme[24] with sufficient number of meshes are
shown by the lines. We find a good agreement between the
two results for each value ofg.

The error of the LBM is now defined as

E =E
−`

`

uû1 − û1
exaudx̂1, s46d

where the variable with the superscript ‘exa’ represents the
exact solution. Here we used the numerical solution by the
MacCormack method with sufficient number of meshes as
the exact solution. In Fig. 3,E is plotted as a function of the
spatial mesh widthDx̂. One finds thatE is proportional to
sDx̂d2 when Dx̂ is relatively large, since the second-order
finite-difference scheme is used. For the smaller value ofDx̂,
however, we find thatE asymptotes to some value that is
proportional to«. This is the error inherent to the LBM, since
the macroscopic variables obtained from the solution of the
LBM satisfy the Euler equations at the leading orderfor
Os1dg but not at the next orderfor Os«dg as mentioned in
Sec. III A fsee the statements below Eqs.s38ad–s38cdg. Thus,
the result of the asymptotic analysis in Sec. III A has been
supported numerically.

B. Riemann problem

In this section we focus our attention on flows with steep
variation, or the Riemann problem: the initial-value problem
of the one-dimensional integral relation(40) whose initial

macroscopic variablesr̂0, û0, andT̂0 are piecewise constant,
with one jump discontinuity. Note that the Riemann problem
has no characteristic length in the initial condition so that the
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time of our interest is chosen as the characteristic timet0.
Thus, the nondimensinal timest̂ of the following results are
always 1, and the characteristic length becomesÎRT0 t0.

First, consider the one-dimensional initial-value problem
of Eq. (40) whose initial macroscopic variables are given by

r̂0 = T̂0 = 1, û1
0 = HU for x̂1 , 0

− U for x̂1 . 0,
s47d

whereU is a given constant. This problem is characterized
by the three parameters«, U, andg sor bd.

The numerical results with«=10−4 and U=1 are shown
for three different values ofg=5/3, 7/5, and 9/7(or b=3, 5,
and 7) in Fig. 4 by the plots. The one-dimensional lattice
Boltzmann model, Eqs.(19), (20), (21a), and(21b), was used
for calculation. The corresponding exact theoretical solutions
[25] are shown by the lines. We find a good agreement be-
tween the two results for each value ofg. Some numerical
data that are far below the exact solution adjacent to the
shock, are only due to the use of numerical scheme whose
mesh width isOs«d that could incur the error of order unity
in the shock region only.

The errorE defined by Eq.(46), with û1
exa given by the

exact theoretical solution, is plotted as a function ofDx̂ in
Fig. 5. One finds thatE is proportional toDx̂ for relatively
largeDx̂, although the second-order finite-difference scheme
is used. This error is a contribution from the shock layer
inside which the error of the solution is of the order of unity,
and the width of the layer is proportional toDx̂. For the
smaller value ofDx̂, however,E asymptotes to some value
that is proportional to«, since the width of the shock layer
asymptotes to the value proportional to«.

FIG. 2. Thex̂1 dependence of

û1, p̂, r̂, and T̂ at t̂=1 of the nu-
merical results for the one-
dimensional problem whose initial
condition is Eq. (45) with «
=10−4 andU=1. The plots are the
results by the LBM with Dx̂
=0.02:j, g=5/3; n, g=7/5; q,
g=9/7. The lines represent the
corresponding results by the Mac-
Cormack method with sufficient
number of meshes:g=5/3 (solid
lines), 7 /5 (dashed lines), and 9/7
(dotted lines). From the symmetry
of the problem with respect tox̂1

=0, only the results forx̂1.0 are
shown.

FIG. 3. TheDx̂ dependence ofE for the numerical results of the
one-dimensional problem whose initial condition is given by Eq.
(45) with U=1 andg=5/3, q,, «=10−3; j, «=10−4. The dash-dot
line in the figure representsE,Dx̂2.
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Next, we consider the shock-tube problem. The initial
macroscopic variables are given by

p̂0 = H1 for x̂1 , 0

P for x̂1 . 0,
û1

0 = 0, T̂0 = 1, s48d

wherep̂0= r̂0T̂0 is the nondimensional initial pressure andP
is a given constant. This problem is characterized by the
three parameters«, P, and g. The numerical results for«
=10−4, P=5, andg=5/3, 7/5, 9/7 areshown in Fig. 6 by
the plots together with the corresponding exact theoretical
solutionssrepresented by the linesd. We find a good agree-
ment between the two results for each value ofg. The
errorE defined by Eq.s46d is plotted in Fig. 7. In this case
also,E is proportional toDx̂ for relatively largeDx̂, andE
asymptotes to some value that is proportional to« as Dx̂
becomes smaller.

From the above numerical examples, we find that flows
with steep variation can be described by the finite-difference
scheme of Eq.(15) with the error ofOs«d+OsDx̂d. By choos-
ing Dx̂,«, then, the error becomesOs«d, and agrees with the
result of the asymptotic analysis in Sec. III B.

Finally, we note the following three points. First, we cal-
culated the Riemann problem using the two-and three-
dimensional lattice Boltzmann models also. The results gave
the same tendency as those of the one-dimensional model
presented above. Second, there appeared no shock waves

FIG. 4. Thex̂1 dependence of

û1, p̂, r̂, andT̂ of the results by the
LBM for the one-dimensional
problem whose initial condition is
Eq. (47) with «=10−4 and U=1.
The plots are the results by the
LBM with Dx̂=0.002:j, g=5/3;
n, g=7/5; q, g=9/7. Thelines
represent the corresponding theo-
retical solutions forg=5/3 (solid
lines), 7 /5 (dashed lines), and 9/7
(dotted lines). From the symmetry
of the problem with respect tox̂1

=0, only the results forx̂1.0 are
shown.

FIG. 5. TheDx̂ dependence ofE for the numerical results of the
one-dimensional problem whose initial condition is given by Eq.
(47) with U=1 andg=5/3: q, «=10−3; j, «=10−4. The dash-dot
line in the figure representsE,Dx̂.
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across which the entropy of fluid particles decreases(or
waves across which the pressure of fluid particles decreases)
in all the obtained numerical results including the two- and
three-dimensional flows which are not shown here. Thus, we
believe that the scheme used in the present study[the usual
finite-difference scheme with the first-order forward in time
and the second-order upwind in space of the kinetic equation
(15)] can describe the shock wave propagation correctly
with the entropy condition being satisfied. Third, the lattice
Boltzmann models including our model can cause numerical
instability if the local Mach number exceeds 1. The precise
mechanism of this instability has not yet been clarified, and
there are some opinions, e.g., the velocity distribution func-
tion being negative values. However, we found that stable
calculation is possible even with the negative velocity distri-
bution function if the local Mach number does not exceed 1.
The reason for this numerical instability is, therefore, a pend-
ing problem of the lattice Boltzmann method that should be
clarified.

V. CONCLUSION

The lattice Boltzmann model for the compressible Euler
equations that can take the flexible specific-heat ratio with

FIG. 6. Thex̂1 dependence ofû1, p̂, r̂, andT̂ of the results by the LBM for the one-dimensional problem whose initial condition is Eq.
(48) with «=10−4 andP=5. The plots are the results by the LBM withDx̂=0.002:j, g=5/3; n, g=7/5; q, g=9/7. Thelines represent
the corresponding theoretical solutions forg=5/3 (solid lines), 7 /5 (dashed lines), and 9/7(dotted lines).

FIG. 7. TheDx̂ dependence ofE for the numerical results of the
one-dimensional problem whose initial condition is given by Eq.
(48) with P=5 andg=5/3: q, «=10−3; j, «=10−4. The dash-dot
line in the figure representsE,Dx̂.
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small number of discrete velocities is presented together with
its rigorous theoretical background. First, we treated the case
where the solution makes an appreciable variation over the
length or time scale of the system. Then the macroscopic
variables obtained from the solution of the kinetic equation
(15) and the initial condition(16) satisfy the compressible
Euler equations and their initial condition. In contrast, when
the scale of variation is steep due to shock waves and contact
discontinuities at some local regions, the macroscopic vari-
ables obtained from the solution of the integral relation(40)
satisfy the weak form of the compressible Euler equations.
Numerical examples and the error estimates are also pre-
sented, and the results supported the above theoretical argu-
ments.

APPENDIX: CONSISTENCY OF THE
FINITE-DIFFERENCE SCHEME WITH THE INTEGRAL

RELATION (40)

In this appendix, we will prove that the usual finite-
difference scheme withDt̂,« and Dx̂,« of the kinetic
equation(15) sD=1d and the initial condition(16) is consis-
tent with the integral relation(40) (see also Ref.[14]). For
the sake of simplified discussion and notations, the first-order
scheme is considered and the caret notation is omitted. The
extensions to the multidimensionssD=2,3d and the higher-
order schemes are straightforward. We start with the follow-
ing finite-difference scheme of the kinetic equation(15) sD
=1d and the initial condition(16):

f ist + Dt,xd − f ist,xd
Dt

+ ci
f ist,xd − f ist,x − Dxd

Dx

=
f i
eqsr,u,Td − f ist,xd

«
, sA1d

f is0,xd = f i
eqsr0,u0,T0d. sA2d

Multiplying Eq. sA1d by cst ,xd, or any smooth test function
of t andx that vanishes fort+ uxu large enough, and integrat-
ing over the wholet−x plane, we obtain

E
−`

`

dxE
0

` FS f ist + Dt,xd − f ist,xd
Dt

+ ci
f ist,xd − f ist,x − Dxd

Dx

−
f i
eqsr,u,Td − f ist,xd

«
Dcst,xdGdt = 0. sA3d

Transforming the term involvingfst+Dt ,xd on the left-hand
side by replacing the variable of integrationt+Dt by t, and
the term involving fst ,x−Dxd by replacing the variablex
−Dx by x, we get

E
−`

`

dxE
0

` FScst − Dt,xd − cst,xd
Dt

+ ci
cst,xd − cst,x + Dxd

Dx
D f ist,xd

−
f i
eqsr,u,Td − f ist,xd

«
cst,xdGdt

−E
−`

`

dxE
0

Dt cst − Dt,xdf ist,xd
Dt

dt = 0. sA4d

The difference of cst−Dt ,xdf ist ,xds0, t,Dtd and
cs0,xdf is0,xd is of the order of unity only in the regions of
Os«d+OsDxd where the initial value off i makes a steep
variation, and it isOsDtd in the other regions where the ini-
tial value of f i makes a moderate variation. Thus, the last
term on the left-hand side of Eq.sA4d becomes

−E
−`

`

dxE
0

Dt cst − Dt,xdf ist,xd
Dt

dt

= −E
−`

`

cs0,xdf is0,xddx+ Os«d + OsDxd + OsDtd

=−E
−`

`

cs0,xdf i
eqsr0,ua

0,T0ddx+ Os«d + OsDxd + OsDtd,

sA5d

where the initial conditionsA2d is used to derive the far right
side. Then, from Eq.sA4d,

E
−`

`

dxE
0

` FScst,xd − cst − Dt,xd
Dt

+ ci
cst,x + Dxd − cst,xd

Dx
D f ist,xd

+
f i
eqsr,u,Td − f ist,xd

«
cst,xdGdt

+E
−`

`

cs0,xdf i
eqsr0,ua

0,T0ddx= Os«d + OsDxd + OsDtd.

sA6d

As Dt,« andDx,« tend to zero, then, Eq.sA6d converges
to the integral relations40d. Thus, the consistency of the
finite-difference schemesDt,« and Dx,«d with the inte-
gral relations40d has been proved.

We can easily extend the above discussion to the scheme
(8) often used in the LBM, and also to the higher-order
finite-difference schemes.
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